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Lymphoma remains one of the most prevalent forms of cancer, with over 80,000 cases diagnosed annu-
ally in the U.S. alone. The CD30 receptor, overexpressed in lymphoma cells, is essential for cancer cell
proliferation and survival, making it a critical therapeutic target. The CD3¢ receptor subunit is found on
immunocompetent lymphocytes and promotes activity in response to specific antigens. Bispecific anti-
bodies (bsAbs) can bind to two antigens simultaneously, facilitating immune cell-mediated cytotoxicity.
This research aims to identify Fab regions in silico that can bind to CD3e and CD30 receptors while also
providing a model bsAb discovery pipeline. To formally investigate how scientists may consider using
these technologies for bsAb development, this study hypothesizes that using computational analysis of
various Fab fragments and the CD30 and CD3¢ receptors will aid in recognizing antibodies that bind
to CD8+ cells and lymphoma cells, respectively, resulting in the identification of potential treatments.
The receptor and antibody structures were obtained from the AlphaFold 3 webserver and Protein Data
Bank (PDB), respectively. Molecular docking was performed using HDOCK to model receptor-antibody
interactions, and resulting complexes were evaluated using HADDOCK PRODIGY webserver, a compu-
tational program to compute binding energy. Key criteria of Fab fragment selection included binding
energy, hydrogen bond count, and visual inspection of docking conformations. Notably, Fab fragment
1IQW demonstrated the highest binding affinity (-25.6 kcal/mol) and the highest hydrogen bond count of
28 for the CD3¢ receptor. 1A5F had the highest binding affinity (-23.0 kcal/mol), though a low hydrogen
bond count of 7, for the CD30 receptor. This research developed a model pathway for producing effective
bispecific antibodies targeting the CD30 and CD3¢ receptor chains while demonstrating the potential of

computational techniques for bsAb development.

1. INTRODUCTION

Lymphoma, encompassing both Hodgkin lymphoma (HL) and
Non-Hodgkin lymphoma (NHL), made up approximately 0.4%
and 4%, respectively, ofallnew cancer casesin 2024, resulting in
a combined 3.4% of cancer-related deaths . In lymphoma, the
lymphatic system’s white blood cells, known as lymphocytes,
divide uncontrollably, producing cancerous cells that crowd
out healthy tissue. NHL often originates in lymph nodes of
the upper body, including in the neck, under the arms, or in
the abdomen, while HL can originate anywhere in the body.
Symptoms of this disorder include swollen lymph nodes, fa-
tigue, fever, itchy skin, and more 2. Currently, there are many
treatments for lymphoma, including chemotherapy, radiation
therapy, and immunotherapy 3*. Nevertheless, lymphoma has
the inherent ability to spread quickly as it involves blood cells

that flow throughout the body. Due to its often-non-specific
symptoms, identifying the most optimal treatment plan for pa-

tients can be extremely difficult °.

Immunotherapies use the body’s natural immune responses
and help them function more effectively against certain diseases
6, Clinical studies have demonstrated their success through
various approaches, including immune checkpoint inhibitors,
which treat cancers by blocking proteins that prevent T cells
from Killing cancer cells 7. The specific nature of immunothera-
pies will continue to motivate their success as they grow over
the following years. Additionally, with movements such as the
Precision Medicine Initiative (PMI), treatments that consider ev-
eryone’s disease phenotype will grow in demand. Immunother-
apiesthatcan be slightly modulated per the disease mechanisms
unique to individual patients or patient subgroups will provide
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safer and more effective procedures 8.

Bispecific antibodies (bsAbs), a leading advancement in im-
munotherapy, representa potent class of therapeutic molecules
recognized for their potential as an effective solution to vari-
ous cancers and autoimmune diseases. bsAbs are engineered
molecules that rely on specific physical arrangements to enhance
the immune system’s efficiency °. The dual-targeting nature of
each molecule allows for specificity in targets while providing
the simple advantage of only having to engineer a single protein.
bsAbs have shown efficacy in treating various diseases, includ-
ing rheumatoid arthritis, hemophilia, multiple myeloma, and
more. bsAbs have also been used in cancer treatment, including
lymphoma >1%11, Due to their fast-acting applications in cancer
treatment and their modularity, they may appear in many more
applications soon.

A commonly targeted receptor for various subtypes of lym-
phomaisCD30/TNFRSF8.CD30isatumornecrosisfactorrecep-
tor (TNFR) that functions as a communications hub, regulating
pathwaysinvolved in cell survival, cell differentiation, and apop-
tosis. CD30 ligand (CD30L) triggers signaling pathways that can
promote the survival of both healthy and cancerous lymphoma
cells 12, The receptor is commonly overexpressed in HL and
some NHLs, including the rare and aggressive Anaplastic Large
Cell lymphoma (ALCL), characterized by large, non-functioning
lymphoma cells. As a cell surface receptor, it has great thera-
peutic potential, making it a crucial target for various drugs,
including monoclonal antibodies (mAbs). 1314, Although this
receptor is found on many species of CD4+ and CD8+ lympho-
cytes, significant overexpression of CD30 in cancer cells helps to
reduce unwanted binding of drugs to healthy cells.

CD3 epsilon (CD3¢) is a different yet equally important com-
plex involved in many signal-transduction pathways in T-cells.
It is a part of CD3, a complex of proteins that plays a critical
role in T-cell signaling and forms a heterodimeric complex with
the T-cell receptor (TCR). Through CD3¢’s activation, a signal-
ing cascade results in T-cell proliferation and TCR engagement
with MHC [, helping the immune system respond to diseased
cells 5. Moreover, it is clearly located on the surface of CD8+
(cytotoxic T-cells) and is considered the most exposed subunit
of the CD3 protein, making it a druggable site that has been tar-
geted by many mAbs . This receptor is also underexpressed in
HL, allowing mAbs to target primarily healthy cells. Anticancer
treatments have the potential to bind to the CD3¢ receptor to
help T-cells recognize the cancer cell and become fully active 12.

Protein binding assays, such as phage display and ELISA, are
commonly used to develop molecules like bsAbs. Phage display
involves using bacteriophages to present peptides on their sur-
faces, allowing researchers to identify binders. ELISA (enzyme-
linked immunosorbentassay)isatechnique thatusesantibodies
and color changes to detect and quantify specific proteins 7.
Although effective, these methods can be time-consuming for
contemporary laboratories and pharma organizations. Thus,
molecular docking has been popularized as an effective way to
testdrug molecules before production 8. Molecular dockingis a
technique used to model interactions between a small molecule,
most commonly a drug or a ligand, and a larger molecule, like a
receptor or enzyme. It involves predicting how a drug wants to
bind to the target protein’s active or binding site to emulate the
processesthatmay occurin natural environments. By doing this,
the strength and stability of the interaction (binding affinity) can
be estimated to understand how effectively the drug will attach
19 Generative algorithms called search algorithms aim to find
the possible orientations of each molecule while scoring func-

tions evaluate the binding potential and predict the strength of
interactions. This method is extensively used in drug discovery
and development, and it enables researchers to go through a
large set of compounds to identify possible candidates for drugs
without doing expensive lab testing. It is now a crucial tool for
computational biology and medicinal chemistry.

Historically, chemotherapy, radiation therapy, and im-
munotherapy have been used to treat lymphomas. Many bsAb
medications, including Mosunetuzumab and Epcoritamab, have
already been developed and currently show promise in treating
relapsing lymphoma 2°. In a phase 1/2a trial, a bispecific an-
tibody binding to the CD3 receptor of the T-cell and the CD30
receptor present on the Hodgkin and Non-Hodgkin cells was
created to stimulate cytotoxicity, as seenin Figurel 21 Although
this provides evidence to use this pair of receptors as targets,
finding Fab fragments to form the epitopes of bsAb molecules
can be challenging. Their selection can be limited to in vitro
identification, with inefficiency in testing being a crucial issue in
production. Developingnew therapeuticmolecules, particularly
bsAbs, is a complex and resource intensive process. However,
the integration of computational and artificial intelligence (AI)
technologies into the production of bispecific antibodies remains
limited, leaving opportunities for innovation.

Recent breakthroughs in computational biology have rev-
olutionized our ability to predict complex structures, playing
pivotal roles in scientific discovery. As these tools continue to
evolve, they show evidence of accelerating the development of
effective treatments for complex diseases. It is unclear whether
research laboratories working on bsAb production are using
contemporary Al or computational models to enhance output.
To formally investigate how scientists may consider using these
technologies for bsAb development, this study hypothesizes that
using computational analysis of various Fab fragments and the
CD30 and CD3¢ receptors will aid in recognizing antibodies that
bind to CD8+ cells and lymphoma cells, respectively, resulting in
the identification of potential treatments. This study focuses on
cancer types that have shown significant overexpression of the
CD30 receptors to use for in silico modeling to design bispecific
antibodies potentially targeting HL and ALCL cells.

2. RESULTS

In this work, computational analysis and prediction of antibody
docking to produce bsAbs in lymphoma treatment has been
performed.

Binding site prediction: To understand the surface proper-
ties of the CD3¢ and CD30 receptors, protein binding site was
predicted. After acquiring the Protein Data Bank (PDB) files
for both receptors, their binding sites were located using Scan-
Net, an Al binding affinity software, which are displayed in
Figure 2a and 2c. Using ChimeraX-1.8, electrostatic surface po-
tential was also visualized as seen in Figure 2b and 2d. In the
receptor molecules CD3¢and CD30, different regions are located
above and below portions of the cellular membrane. Referring
to Figure 2, the divisions of receptor molecules can be easily
recognized. Within the cell, the endodomain, the receptors form
curved and convoluted structures due to peptide interactions
and to enhance signal transduction pathways. Within the trans
domain, or the cell membrane, the receptors maintain a neu-
tral charge to reduce repulsion from the fatty acid chains of
the phospholipids. Finally, the outermost region, called the
ectodomain, contains the area with the highest binding affinity.
The antibodies bind in this region, as indicated by the difference
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Fig. 1. Schematic of Bispecific Antibody:The CD3¢receptor is present on the surface of the cytotoxic T-cell, while the CD30 recep-
tor is located on the cancer cell’s surface. A bispecific antibody interacts with both receptors and physically links the T-cell and the

cancer cell, forming an immunological synapse between them.

in coloration; thus, the search for Fab fragments was generally
constrained to these areas when possible.

Visual identification of optimal binding locations: Our
analysis compiled a list of binding scenarios in a fixed set of 10
Fab fragments, with most receptors forming a binding complex
in the extracellular matrix of the cells. The docking software pro-
vided the 10 top models with individual docking energy scores
and ligand RMSD values for accuracy and structural integrity.
The most visually capable docking structure was chosen out of
these models for each Fab fragment, as seen in Figures 3 and
4, by assuring they were in accordance with the binding sites
identified during binding site prediction. These models were
then collected and utilized for the next tests.

Hydrogen Bond Count and Binding Affinity: Unlike the
previous visual or descriptive analysis, numerical data regard-
ing binding energy and the amount of hydrogen bonds was
calculated with much more quantitative standards. The analysis
determined that the Fab fragment 11QW demonstrated the high-
est binding affinity (-25.6 kcal/mol) and the highest hydrogen
bond count (28) for the CD3¢ receptor. 1A5F was determined to
have the most optimal binding affinity (-23.0 kcal/mol), though
with a low hydrogen bond count (7), for the CD30 receptor. The
findings suggest that, with this specific data set and methodol-
ogy, a bispecific antibody containing the 1IQW and the 1A5F

fragments would be most effective in treating certain lymphoma
groups with overexpressed CD30 receptors. The results can be
seen in Table 1

Antibody Design: The previous analyses led to the devel-
opment of a bispecific antibody structure as seen in Figure 5,
combining the fragments 1A5F and 11QW with a previously
known antibody. This structure may be used as a baseline to
further examine efficacy and immunogenicity, or the potential
to cause unwanted immune reactions, in vitro.

Novel Epitope Modeling. DeepAB, a deep-learning tool
for structure prediction, was used to determine the structure of
various epitopes that maybe found on antibody chain structures.
The binding complexes were obtained using the same methods
from using the Fab regions from Protein Data Bank, allowing for
the calculation of binding energy and hydrogen bond counts. As
seen in Table 2, Fv4 had the greatest binding energy for CD3¢
(-19.6 kcal/mol) with a hydrogen bond count of 6. Fvl had
the greatest binding energy for CD30 (-18.3 kcal/mol) with a
hydrogen bond count of 8.

3. MATERIALS AND METHODS

Overview: To determine the most optimal Fab regions in devel-
oping a bsAb for the CD30 and CD3¢ receptors, the Fab struc-
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Fig. 2. Surface Properties of Receptors.(a) The binding site of the CD3 € receptor is located in the ectodomain or extracellular ma-
trix; (b) The electrostatic surface potential of the CD3¢ receptor protein is mainly negative in the outer region; (c) The binding region
of the CD30 receptor is primarily located in the ectodomain; and (d) The electrostatic surface potential of the CD30 receptor protein
is visualized.
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Fig. 3. Docked Structures of CD3¢e-Antibody Interactions:Each receptor input was configured to the 10 top models, out of which
the most visually optimal were selected.
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Fig. 4. Docked Structures of CD30-Antibody Interactions. Each receptor input was configured to the 10 top models, out of which
the most visually optimal were selected.

Table 1. Receptor-Antibody Binding Energy and Hydrogen Bonds: This data was used to determine the most optimal
antibody-receptor complexes for CD30 and CD3¢&

Ligand Binding Energy (CD3¢) (kcal/mol) Binding Energy (CD30) (kcal/mol) Hydrogen Bonds (CD3¢/CD30)

1A5F  -23.0 -23.0 20/7
1B4]  -24.4 -21.0 12/5
1FST  -24.7 -21.2 11/18
1FI5 -235 -21.3 10/ 16
1iL1 -22.0 -14.1 5/23
1IQW  -25.6 -22.9 28/17
INLB  -23.4 -19.9 22/20
2HRP  -16.9 -21.9 15 / 40
2UYL  -125 -21.6 7/23
4A6Y  -11.1 -10.8 5/13

Table 2. Fv-Antibody Binding Energy and Hydrogen Bonds: This data was used to determine the most optimal Fv-receptor com-
plex from the epitopes acquired from DeepAB.

Ligand Binding Energy (CD3¢) (kcal/mol) Binding Energy (CD30) (kcal/mol) Hydrogen Bonds (CD3¢ / CD30)

Fvl -19.0 -18.3 16/8
Fv2 -18.7 -16.3 12/8
Fv3 -15.1 -15.9 10/18
Fv4 -19.6 -17.9 9/9
Fv5 -15.7 -15.2 5/9
Fv6 -15.0 -17.9 6/8
Fv7 -14.8 -14.3 8/8
Fv8 -15.9 -14.8 5/11
Fv9 -14.9 -17.2 4/4

Fv10 -15.4 -15.6 7/13




‘ Research Article ‘

International Journal of Science and Innovation 6

(a)

1IQW Fab Fragment

(b)
-,: *

Fig. 5. Engineered Antibody Structure. The selected Fab regions were chosen to develop a hypothetical model of an engineered
bsAb that consists of clearly defined chains. The final antibody incorporates the most optimal Fab fragments, 1A5F and 11QW.

tures were obtained and tested for their structural alignment
with each receptor protein. Complexes containing both protein
chains were analyzed for their binding ability in terms of hydro-
gen bond count and binding energy, and the resulting data was
compared to determine the most optimal pair of Fab regions.
The overall procedure can be clearly visualized below in Figure
6.

Receptor Structure Modeling. Uniprot 22, one of the largest
databases of protein sequences and functional information, pro-
vided the receptor chains for this study. As a comprehensive
tool, finding suitable structural representations of the CD30 and
CD3ereceptor chains was streamlined. Through the UniProtKB
database, CD3¢ and CD30 protein sequences (Homo Sapiens)
were exported for analysis through the AlphaFold 3 server. Al-
phaFold3 23is an artificial intelligence (Al) that uses machine
learning to predict the 3D structure of proteins from their amino
acid sequences and intra-protein interactions. It uses a complex
deep-learning system, as displayed in Figure 8, that takes pre-
viously defined structures from the AlphaFold database and
finds similar sequences that are used as a basis for predictive
modeling. Using it allowed the protein structure confidence
to be analyzed and assess if the structures were optimal for
this study. Analysis returned CD3¢ with a predicted template
modeling (pTM) score of 0.47 and CD30 with a pTM of 0.27,
both under the optimal range for high confidence and moder-
ate confidence (pTM > 0.5). Nevertheless, it was determined
that because of the large percentage of very high per-residue
confidence scores (pLDDTs) for the anticipated binding regions
within the proteins (pLDDT>90), which are confidence scores
for amino acid (residue) location, and the large amounts of loop
regionsand flexibletailsinboth receptors thatcontributed tothe
low pTM, our analysis would be unaffected. From AlphaFold
3, the protein structures were opened through ChimeraX-1.8. 24
As auser-friendly modeling tool, importing PDB files allows the

software to visually represent the properties of proteins.

Antibody selection: The following criteria were used to
determine the most appropriate Fab candidates: Visual analy-
sis, binding energy, and hydrogen bonding. The most optimal
binding sites were visualized using the ScanNet software 2°,
a deep learning (DL) model that highlights features from 3D
structures. The regions in blue, as seen for the CD3¢ and CD30
receptors in Figure 2aand ¢, respectively, represent the regions
of the receptors with the highest binding affinity. The binding
site is shown in the black box. The optimal binding scenarios
could be more accurately represented using this visual charac-
teristic. Additionally, the ChimeraX-1.8 software assisted in the
visual analysis. Through this software, electrostatic representa-
tions of the molecules called electrostatic surface potentials (ESP)
were formed, with red indicating negative and blue indicating
positive as shown in Figure 2b and 2d.

Antibody Structure Download: Structures were collected
via Protein Data Bank 2%, an archive of 3D structure data for
biological molecules, to complete a set of Fab fragments usable
for analysis. By providing 3D structures for these molecules,
they could easily be analyzed through the computational analy-
sis tools used in the study. For the list, the fragments included
the following: PDB ID = 1A5F, 1B4], 1F8T, 1FL5, 11L1, 11QW,
INLB, 2HRP, 2UY1, and 4A6Y. These Fab fragments were se-
lected based on their structures and ability to remain exclusive
to the CD3¢ and CD30 receptors. Additionally, many of the
structures were acquired from Mus Musculus instead of Homo
Sapiens due to their higher data availability and overall homol-
ogy with human proteins.

Receptor-Antibody Molecular Docking: Using computa-
tional tools, the HDOCK 27 modeling software was used to find
the optimal binding scenario and ligand structure. In doing so,
the software provided the top 10 results and additional RMSD
data. Finding receptors that bind to areas of high affinity, prefer-
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Fig. 6. Overview of Research Methodology. This diagram illustrates the step-by-step approach used in the study, highlighting
key steps involved in in silico bispecific antibody development. The flowchart visually represents the sequence of methods,
including using docking and bond interaction analysis to reach an optimal Fab fragment pair. Each step is designed to optimize
the accuracy and efficiency of data collection and analysis in research.

ably in the ectodomain, resulted in selecting 10 specificreceptor
configurations determined to be “optimal” through the previ-
ously outlined visual criteria. With this, the optimal binding and
structural scenarios for antibodies were selected, as can be seen
in Figures 3 and 4. Next, more specific data regarding binding
affinity and hydrogen bond count were to be determined.

Receptor-Antibody Molecular Docking Analysis: The
receptor-antibody complex structures were downloaded and
analyzed after the molecular docking simulations. The binding
energies of the antibodies with the CD30 and CD3¢ receptors
molecules,respectively, were calculated to create abindingaffin-
ity ranking. Binding energy measures the overall strength of
the interaction between the ligand and target molecules. Higher
binding energy indicates a more vital, stable interaction crucial
for therapeutic efficacy. It also implies the time that antibodies
will bind with the receptor, increasing the probability that the
bsAbs will interact with both types of cells. Using the HAD-
DOCK Prodigy Web Server 28, another computational analysis
software, the PDB files of the antibody-receptor complexes re-
covered from the HDOCK software were inputted with minor
adjustments to the file script. By analyzing this, a value for
binding energy (kcal/mol) was received for each complex. This
data was the key determinant in our conclusion regarding the
most effective antibody for producing a bsAb. The hydrogen
bond countbetweentheligandand receptorswasalso calculated
using in-house Python-based software. The Python code used
to calculate the hydrogen bond count between each receptor
protein and antibody chains can be found on GitHub 2°. Only
the strongest bond interactions between atoms of nitrogen or
oxygen were calculated with a maximum distance of 2.7 A.

Preliminary results from selection criteria: After organiz-
ing this data, as seen below in Table 1, the criteria necessary

for completion had been determined and analysis could finally
begin. Due to the higher ranking of binding energy over hydro-
gen bond count, the most optimal antibodies were determined.
The 11QW fragment demonstrated the highest binding affinity
(-25.6 kcal/mol) and the highest hydrogen bond count (28) for
the CD3¢ receptor. 1A5F had the most optimal binding affinity
(-23.0 kcal/mol), though with a low hydrogen bond count (7),
for the CD30 receptor. Despite the low hydrogen bond count
compared to other antibody-receptor complexes, the predeter-
mined hierarchy of factors led to the conclusion of 1ASF being
the most optimal for CD3&. Thus, the combination of the 1A5F
and 11QW Fab fragments provided the best estimated scenario
for binding.

Antibody Generation: IASF and 11QW were combined with
the Ig structure of PDB ID 1IGT to generate a complete antibody
structure that may be tested for binding in vitro. As seen above
in Figure 6, the protein sequences were edited to form two light
chains and two heavy chains, effectively combining the Fab frag-
ments with the antibody. Structural analysis through ChimeraX-
1.8 additionally demonstrated that few to no hydrogen bonds
existed within the hinge joint of the engineered antibody. Due to
bsAb’s purpose of binding two targets simultaneously, this lack
of hydrogen bonds in this region contributes to the high flexibil-
ity of the molecule, increasing the probability that it would be
viable in-vitro. This structure may be subject to additional com-
putational and laboratory testing to identify any shortcomings
as an effective lymphoma treatment.

Novel Antibody Structure Prediction: To more effectively
generate new Fab region sequences for analysis, DeepAB was
used for predictive modeling. DeepAB is a deep-learning soft-
ware that is considered more optimal than AlphaFold 3 for an-
tibody generation due to it being optimized in predicting the
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complementarity-determining regions (CDRs) and epitopes of
antibodies 3°. These regions are crucial for antigen recognition
and are directly involved in binding, presenting it as the more
optimal tool for this procedure. PDB files for the variable do-
main (Fv) composed of portions from each chain, variable heavy
(VH), and variable light (VL). The software outputted a pre-
dicted variable region for each pair of VH and VL chains, which
were then used along with HDOCK and HADDOCK Prodigy
Web Server to determine the best epitopes, as seen in Table 2.
Fv4 had the highest binding energy for CD3e (-19.6 kcal/mol)
with 9 hydrogen bonds, and Fv1 had the highest binding energy
for CD30 (-18.3 kcal/mol) with 8 hydrogen bonds. Analysis of
these epitopes and variable chains shows how scientists may
create novel Fab fragments for bsAbs, enhancing output using
Al modeling software.

4. DISCUSSION

This study utilized computational analysis and DL to investi-
gate their potential in developing bsAbs for lymphoma. Critical
structural and functional parameters influencing binding speci-
ficity and stability were compared by simulating interactions
between receptors commonly found on lymphoma and CD8+
cells. Our findings align with previous research regarding CD3¢e
and CD30 as potential target receptors for immunotherapies
21, Additionally, the computational approach demonstrates the
utility of in silico methods in accelerating antibody design and
reducing reliance on resource-intensive laboratory research.
Comparison with Previous Studies: Historically, bsAb de-
velopment has been slow and resource-draining, limiting its
availability for various diseases and cancer species. Many man-
ufacturing techniques have been used for bsAb synthesis and
testing, each resulting in unique structural properties. How-
ever, many bsAb development trials have begun with typical in
vitro pathways that primarily utilize dual-target binding assays,
phage display, or ELISA assays to identify potential candidates
for bsAb technology 31. Though these methods produce results,
they are often based on a trial-and-error process, have shown
significant bias, and do not consistently provide substantial re-
sults 32. Pairing optimization and screening for affinity testing
invitro, although necessary, may notbe the optimal first step, es-
pecially when dealing with randomized sets of antibody chains.
Many previous studies focus on proteins that have already had
significant analyses of their properties, so a computational and
Al based approach would be able to determine characteristics
including binding energy, epitope location, antigen size, and ex-
tracellularinteractions thatare difficult to determine otherwise.
More recently, high throughput/single cell screening have
beendeveloped to more efficiently use samples to engineer bsAb
variants. Analyses sorted various clones generated by the sys-
tem based on specific variables, thus showing improvement
in bsAb design and functionality 32. Still, the integration of
DL has been slow when compared to other examples of anti-
body development. Of course, there have been a small handful
of notable applications of computational and Al in this field.
For example, a research study utilized novel Al computational
frameworks for selecting target receptor combinations for bis-
pecific antibodies when focusing on research and development.
Though thisstudy offerssignificantinsightinto cancertreatment
using bsAbs, this model relies heavily on data from clinically
approved bispecific antibodies and does not consider different
Fab regions. Additionally, without a focus on developing anti-
body structures, it primarily aids in receptor identification 33

New services claim to use Al modeling to develop bispecific
and multispecific molecules, yet their methods are not publicly
disclosed. A clear lack of literature referencing DL software
may be indicative of the need for a more efficient pipeline for
discovery, which this study addresses.

Applications and Limitations: Through this analysis, it can
be determined that machine learning tools and computational
studies can be used in the production of bsAbs not only for
lymphoma but also for other cancers and diseases. bsAbs for
lymphoma are produced in the lab ata large scale using the opti-
mal antibody combinations. Once injected into the bloodstream,
these structures can travel throughout the body, binding to lym-
phoma cells and CD8+ T-cells to help accelerate the immune
response. Although this research may permit the extension of
computational analysis in bsAb development, it can only be a
preliminary milestone in developing new antibodies. Clinical
testing and laboratory analysis should be performed to validate
antibody binding further, and it may be of interest to create a
model that combines many of these tools used to form a devel-
opment pipeline.

Additionally, as this study only introduces a pathway into Al
modeling in bsAb analysis, it comes short on important factors
that are considered contemporary challenges in bsAb develop-
ment. Risk factors and response prediction are still uncertain in
treatment production and administration, and mechanisms or re-
sistance are still present that may prevent bsAbs from achieving
greater efficiency. Intrinsic mechanisms, including immune-
evasive gene expression, may neutralize the efficacy of potential
bsAb applications. As attention on DL in bsAb development
amplifies, these risk factors, along with drug toxicity, can be
modeled to improve in the process of drug discovery.

Nevertheless, this technology and similar processes will be
revolutionary in the computational field. In the context of preci-
sion medicine, it allows for a targeted cancer approach that can
be developed faster than traditional solutions or immunother-
apies. By doing so, specific receptors that are characteristic of
lymphoma subspecies may enhance longevity and mitigate the
impact of the disease.

5. CONCLUSION

Out of the fixed antibody set, a bispecific antibody composed of
the 1A5F and 11QW Fab fragments would be the most effective
in HL and ALCL treatment targeting the CD30 and CD3&recep-
tors. Using DL and computational software to accelerate bsAb
development can enhance the popularity and use of these ap-
plications, even contributing to more efficient high-throughput
technologiesand systems. The elementary methodsdiscussedin
this research can be effective when paired with systems used to
reduce toxicity and, more accurately, model response prediction,
increasing relevance in contemporary laboratories and pharma
organizations.
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