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Lymphoma remains one of the most prevalent forms of cancer, with over 80,000 cases diagnosed annu- 
ally in the U.S. alone. The CD30 receptor, overexpressed in lymphoma cells, is essential for cancer cell 
proliferation and survival, making it a critical therapeutic target. The CD3ε receptor subunit is found on 
immunocompetent lymphocytes and promotes activity in response to specific antigens. Bispecific anti- 
bodies (bsAbs) can bind to two antigens simultaneously, facilitating immune cell-mediated cytotoxicity. 
This research aims to identify Fab regions in silico that can bind to CD3e and CD30 receptors while also 
providing a model bsAb discovery pipeline. To formally investigate how scientists may consider using 
these technologies for bsAb development, this study hypothesizes that using computational analysis of 
various Fab fragments and the CD30 and CD3ε receptors will aid in recognizing antibodies that bind    
to CD8+ cells and lymphoma cells, respectively, resulting in the identification of potential treatments. 
The receptor and antibody structures were obtained from the AlphaFold 3 webserver and Protein Data 
Bank (PDB), respectively. Molecular docking was performed using HDOCK to model receptor-antibody 
interactions, and resulting complexes were evaluated using HADDOCK PRODIGY webserver, a compu- 
tational program to compute binding energy. Key criteria of Fab fragment selection included binding 
energy, hydrogen bond count, and visual inspection of docking conformations. Notably, Fab fragment 
1IQW demonstrated the highest binding affinity (-25.6 kcal/mol) and the highest hydrogen bond count of 
28 for the CD3ε receptor. 1A5F had the highest binding affinity (-23.0 kcal/mol), though a low hydrogen 
bond count of 7, for the CD30 receptor. This research developed a model pathway for producing effective 
bispecific antibodies targeting the CD30 and CD3ε receptor chains while demonstrating the potential of 
computational techniques for bsAb development.  

 

 

 
1. INTRODUCTION 

Lymphoma, encompassing both Hodgkin lymphoma (HL) and 
Non-Hodgkin lymphoma (NHL), made up approximately 0.4% 
and 4%, respectively, of all new cancer cases in 2024, resulting in 
a combined 3.4% of cancer-related deaths 1. In lymphoma, the 
lymphatic system’s white blood cells, known as lymphocytes, 
divide uncontrollably, producing cancerous cells that crowd 
out healthy tissue. NHL often originates in lymph nodes of  
the upper body, including in the neck, under the arms, or in 
the abdomen, while HL can originate anywhere in the body. 
Symptoms of this disorder include swollen lymph nodes, fa- 
tigue, fever, itchy skin, and more 2. Currently, there are many 
treatments for lymphoma, including chemotherapy, radiation 
therapy, and immunotherapy 3,4. Nevertheless, lymphoma has 
the inherent ability to spread quickly as it involves blood cells 

 
that flow throughout the body. Due to its often-non-specific 
symptoms, identifying the most optimal treatment plan for pa- 

tients can be extremely difficult 5. 

Immunotherapies use the body’s natural immune responses 
and help them function more effectively against certain diseases 
6. Clinical studies have demonstrated their success through 
various approaches, including immune checkpoint inhibitors, 
which treat cancers by blocking proteins that prevent T cells 
from killing cancer cells 7. The specific nature of immunothera- 
pies will continue to motivate their success as they grow over 
the following years. Additionally, with movements such as the 
Precision Medicine Initiative (PMI), treatments that consider ev- 
eryone’s disease phenotype will grow in demand. Immunother- 
apies that can be slightly modulated per the disease mechanisms 
unique to individual patients or patient subgroups will provide 
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safer and more effective procedures 8. 

Bispecific antibodies (bsAbs), a leading advancement in im- 
munotherapy, represent a potent class of therapeutic molecules 
recognized for their potential as an effective solution to vari- 
ous cancers and autoimmune diseases. bsAbs are engineered 
molecules that rely on specific physical arrangements to enhance 
the immune system’s efficiency 9. The dual-targeting nature of 
each molecule allows for specificity in targets while providing 
the simple advantage of only having to engineer a single protein. 
bsAbs have shown efficacy in treating various diseases, includ- 
ing rheumatoid arthritis, hemophilia, multiple myeloma, and 
more. bsAbs have also been used in cancer treatment, including 
lymphoma 5,10,11. Due to their fast-acting applications in cancer 
treatment and their modularity, they may appear in many more 
applications soon. 

A commonly targeted receptor for various subtypes of lym- 
phoma is CD30/TNFRSF8. CD30 is a tumor necrosis factor recep- 
tor (TNFR) that functions as a communications hub, regulating 
pathways involved in cell survival, cell differentiation, and apop- 
tosis. CD30 ligand (CD30L) triggers signaling pathways that can 
promote the survival of both healthy and cancerous lymphoma 
cells 12. The receptor is commonly overexpressed in HL and 
some NHLs, including the rare and aggressive Anaplastic Large 
Cell lymphoma (ALCL), characterized by large, non-functioning 
lymphoma cells. As a cell surface receptor, it has great thera- 
peutic potential, making it a crucial target for various drugs, 
including monoclonal antibodies (mAbs). 1314. Although this 
receptor is found on many species of CD4+ and CD8+ lympho- 
cytes, significant overexpression of CD30 in cancer cells helps to 
reduce unwanted binding of drugs to healthy cells. 

CD3 epsilon (CD3ε) is a different yet equally important com- 
plex involved in many signal-transduction pathways in T-cells. 
It is a part of CD3, a complex of proteins that plays a critical 
role in T-cell signaling and forms a heterodimeric complex with 
the T-cell receptor (TCR). Through CD3ε’s activation, a signal- 
ing cascade results in T-cell proliferation and TCR engagement 
with MHC I, helping the immune system respond to diseased 
cells 15. Moreover, it is clearly located on the surface of CD8+ 
(cytotoxic T-cells) and is considered the most exposed subunit 
of the CD3 protein, making it a druggable site that has been tar- 
geted by many mAbs 16. This receptor is also underexpressed in 
HL, allowing mAbs to target primarily healthy cells. Anticancer 
treatments have the potential to bind to the CD3ε receptor to 
help T-cells recognize the cancer cell and become fully active 12. 

Protein binding assays, such as phage display and ELISA, are 
commonly used to develop molecules like bsAbs. Phage display 
involves using bacteriophages to present peptides on their sur- 
faces, allowing researchers to identify binders. ELISA (enzyme- 
linked immunosorbent assay) is a technique that uses antibodies 
and color changes to detect and quantify specific proteins 17. 
Although effective, these methods can be time-consuming for 
contemporary laboratories and pharma organizations. Thus, 
molecular docking has been popularized as an effective way to 
test drug molecules before production 18. Molecular docking is a 
technique used to model interactions between a small molecule, 
most commonly a drug or a ligand, and a larger molecule, like a 
receptor or enzyme. It involves predicting how a drug wants to 
bind to the target protein’s active or binding site to emulate the 
processes that may occur in natural environments. By doing this, 
the strength and stability of the interaction (binding affinity) can 
be estimated to understand how effectively the drug will attach 
19. Generative algorithms called search algorithms aim to find 
the possible orientations of each molecule while scoring  func- 

tions evaluate the binding potential and predict the strength of 
interactions. This method is extensively used in drug discovery 
and development, and it enables researchers to go through a 
large set of compounds to identify possible candidates for drugs 
without doing expensive lab testing. It is now a crucial tool for 
computational biology and medicinal chemistry. 

Historically, chemotherapy, radiation therapy, and im- 
munotherapy have been used to treat lymphomas. Many bsAb 
medications, including Mosunetuzumab and Epcoritamab, have 
already been developed and currently show promise in treating 
relapsing lymphoma 20. In a phase 1/2a trial, a bispecific an- 
tibody binding to the CD3 receptor of the T-cell and the CD30 
receptor present on the Hodgkin and Non-Hodgkin cells was 
created to stimulate cytotoxicity, as seen in Figure 1 21. Although 
this provides evidence to use this pair of receptors as targets, 
finding Fab fragments to form the epitopes of bsAb molecules 
can be challenging. Their selection can be limited to in vitro 
identification, with inefficiency in testing being a crucial issue in 
production. Developing new therapeutic molecules, particularly 
bsAbs, is a complex and resource intensive process. However, 
the integration of computational and artificial intelligence (AI) 
technologies into the production of bispecific antibodies remains 
limited, leaving opportunities for innovation. 

Recent breakthroughs in computational biology have rev- 
olutionized our ability to predict complex structures, playing 
pivotal roles in scientific discovery. As these tools continue to 
evolve, they show evidence of accelerating the development of 
effective treatments for complex diseases. It is unclear whether 
research laboratories working on bsAb production are using 
contemporary AI or computational models to  enhance  output. 
To formally investigate how scientists may consider using these 
technologies for bsAb development, this study hypothesizes that 
using computational analysis of various Fab fragments and the 
CD30 and CD3ε receptors will aid in recognizing antibodies that 
bind to CD8+ cells and lymphoma cells, respectively, resulting in 
the identification of potential treatments. This study focuses on 
cancer types that have shown significant overexpression of the 
CD30 receptors to use for in silico modeling to design bispecific 
antibodies potentially targeting HL and ALCL cells. 

 
2. RESULTS 

In this work, computational analysis and prediction of antibody 
docking to produce bsAbs in lymphoma treatment has been 
performed. 

Binding site prediction: To understand the surface proper- 
ties of the CD3ε and CD30 receptors, protein binding site was 
predicted. After acquiring the Protein Data Bank (PDB) files 
for both receptors, their binding sites were located using Scan- 
Net, an AI binding affinity software, which are displayed in 
Figure 2a and 2c. Using ChimeraX-1.8, electrostatic surface po- 
tential was also visualized as seen in Figure 2b and 2d. In the 
receptor molecules CD3ε and CD30, different regions are located 
above and below portions of the cellular membrane. Referring 
to Figure 2, the divisions of receptor molecules can be easily 
recognized. Within the cell, the endodomain, the receptors form 
curved and convoluted structures due to peptide interactions 
and to enhance signal transduction pathways. Within the trans 
domain, or the cell membrane, the receptors maintain a neu- 
tral charge to reduce repulsion from the fatty acid chains of 
the phospholipids. Finally, the outermost region, called the 
ectodomain, contains the area with the highest binding affinity. 
The antibodies bind in this region, as indicated by the difference 
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Fig. 1. Schematic of Bispecific Antibody:The CD3ε receptor is present on the surface of the cytotoxic T-cell, while the CD30 recep- 
tor is located on the cancer cell’s surface. A bispecific antibody interacts with both receptors and physically links the T-cell and the 
cancer cell, forming an immunological synapse between them. 

 

in coloration; thus, the search for Fab fragments was generally 
constrained to these areas when possible. 

Visual  identification  of  optimal  binding  locations: Our 
analysis compiled a list of binding scenarios in a fixed set of 10 
Fab fragments, with most receptors forming a binding complex  
in the extracellular matrix of the cells. The docking software pro- 
vided the 10 top models with individual docking energy scores 
and ligand RMSD values for accuracy and structural  integrity. 
The most visually capable docking structure was chosen out of 

these models for each Fab fragment, as seen in Figures 3 and 
4, by assuring they were in accordance with the binding sites 
identified during binding site prediction. These models were 
then collected and utilized for the next tests. 

Hydrogen Bond Count and Binding Affinity:  Unlike the 
previous visual or descriptive analysis, numerical data regard- 
ing binding energy and the amount of hydrogen bonds was 
calculated with much more quantitative standards. The analysis 
determined that the Fab fragment 1IQW demonstrated the high- 
est binding affinity (-25.6 kcal/mol) and the highest hydrogen 
bond count (28) for the CD3ε receptor. 1A5F was determined to 
have the most optimal binding affinity (-23.0 kcal/mol), though 
with a low hydrogen bond count (7), for the CD30 receptor. The 
findings suggest that, with this specific data set and methodol- 
ogy,   a  bispecific  antibody  containing  the  1IQW  and  the  1A5F 

fragments would be most effective in treating certain lymphoma 
groups with overexpressed CD30 receptors. The results can be 
seen in Table 1 

Antibody Design: The previous analyses led to the devel- 
opment of a bispecific antibody structure as seen in Figure 5, 
combining the fragments 1A5F and 1IQW with a previously 
known antibody. This structure may be used as a baseline to 
further examine efficacy and immunogenicity, or the potential 
to cause unwanted immune reactions, in vitro. 

Novel Epitope Modeling. DeepAB, a deep-learning tool 

for structure prediction, was used to determine the structure of 
various epitopes that may be found on antibody chain structures. 
The binding complexes were obtained using the same methods 
from using the Fab regions from Protein Data Bank, allowing for 
the calculation of binding energy and hydrogen bond counts. As 

seen in Table 2, Fv4 had the greatest binding energy for CD3ε 

(-19.6 kcal/mol) with a hydrogen bond count of 6. Fv1 had 
the greatest binding energy for CD30 (-18.3 kcal/mol) with a 
hydrogen bond count of 8. 

 
3. MATERIALS AND METHODS 

Overview: To determine the most optimal Fab regions in devel- 
oping a bsAb for the CD30 and CD3ε receptors, the Fab struc- 
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Fig. 2. Surface Properties of Receptors.(a) The binding site of the CD3ε receptor is located in the ectodomain or extracellular ma- 

trix; (b) The electrostatic surface potential of the CD3ε receptor protein is mainly negative in the outer region; (c) The binding region 
of the CD30 receptor is primarily located in the ectodomain; and (d) The electrostatic surface potential of the CD30 receptor protein 
is visualized. 

 
 
 
 
 
 
 

 
 

 
Fig. 3. Docked Structures of CD3ε-Antibody Interactions:Each receptor input was configured to the 10 top models, out of which 
the most visually optimal were selected. 
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Fig. 4. Docked Structures of CD30-Antibody Interactions. Each receptor input was configured to the 10 top models, out of which 
the most visually optimal were selected. 

 
 
 

Table 1. Receptor-Antibody Binding Energy and Hydrogen Bonds: This data was used to determine the most optimal 
antibody-receptor complexes for CD30 and CD3ε 

Ligand Binding Energy (CD3ε) (kcal/mol) Binding Energy (CD30) (kcal/mol) Hydrogen Bonds (CD3ε / CD30) 
1A5F -23.0 -23.0 20 / 7 
1B4J -24.4 -21.0 12 / 5 
1F8T -24.7 -21.2 11 / 18 
1Fl5 -23.5 -21.3 10 / 16 
1iL1 -22.0 -14.1 5 / 23 
1IQW -25.6 -22.9 28 / 17 
1NLB -23.4 -19.9 22 / 20 
2HRP -16.9 -21.9 15 / 40 
2UYL -12.5 -21.6 7 / 23 

4A6Y -11.1 -10.8 5 / 13 

 

 
Table 2. Fv-Antibody Binding Energy and Hydrogen Bonds: This data was used to determine the most optimal Fv-receptor com- 
plex from the epitopes acquired from DeepAB. 

Ligand Binding Energy (CD3ε) (kcal/mol) Binding Energy (CD30) (kcal/mol) Hydrogen Bonds (CD3ε / CD30) 
Fv1 -19.0 -18.3 16 / 8 
Fv2 -18.7 -16.3 12 / 8 
Fv3 -15.1 -15.9 10 / 18 
Fv4 -19.6 -17.9 9 / 9 
Fv5 -15.7 -15.2 5 / 9 
Fv6 -15.0 -17.9 6 / 8 
Fv7 -14.8 -14.3 8/ 8 
Fv8 -15.9 -14.8 5/ 11 
Fv9 -14.9 -17.2 4 / 4 
Fv10 -15.4 -15.6 7 / 13 
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Fig. 5. Engineered Antibody Structure. The selected Fab regions were chosen to develop a hypothetical model of an engineered 
bsAb that consists of clearly defined chains. The final antibody incorporates the most optimal Fab fragments, 1A5F and 1IQW. 

 

tures were obtained and tested for their structural alignment 
with each receptor protein. Complexes containing both protein 
chains were analyzed for their binding ability in terms of hydro- 
gen bond count and binding energy, and the resulting data was 
compared to determine the most optimal pair of Fab regions. 
The overall procedure can be clearly visualized below in Figure 
6. 

Receptor Structure Modeling. Uniprot 22, one of the largest 
databases of protein sequences and functional information, pro- 
vided the receptor chains for this study. As a comprehensive 
tool, finding suitable structural representations of the CD30 and 
CD3ε receptor chains was streamlined. Through the UniProtKB 
database, CD3ε and CD30 protein sequences (Homo Sapiens) 
were exported for analysis through the AlphaFold 3 server. Al- 
phaFold3 23 is an artificial intelligence (AI) that uses machine 
learning to predict the 3D structure of proteins from their amino 
acid sequences and intra-protein interactions. It uses a complex 
deep-learning system, as displayed in Figure 8, that takes pre- 
viously defined structures from the AlphaFold database and 
finds similar sequences that are used as a basis for predictive 
modeling. Using it allowed the protein structure confidence  
to be analyzed and assess if the structures were optimal for 
this study. Analysis returned CD3ε with a predicted template 
modeling (pTM) score of 0.47 and CD30 with a pTM of 0.27, 
both under the optimal range for high confidence and moder- 
ate confidence (pTM > 0.5). Nevertheless, it was determined 
that because of the large percentage of very high per-residue 
confidence scores (pLDDTs) for the anticipated binding regions 
within the proteins (pLDDT>90), which are confidence scores 
for amino acid (residue) location, and the large amounts of loop 
regions and flexible tails in both receptors that contributed to the 
low pTM, our analysis would be unaffected. From AlphaFold 
3, the protein structures were opened through ChimeraX-1.8. 24 

As a user-friendly modeling tool, importing PDB files allows the 

software to visually represent the properties of proteins. 

Antibody selection: The following criteria were used to 
determine the most appropriate Fab candidates: Visual analy- 
sis, binding energy, and hydrogen bonding. The most optimal 
binding sites were visualized using the ScanNet software 25,   
a deep learning (DL) model that highlights features from 3D 
structures. The regions in blue, as seen for the CD3ε and CD30 
receptors in Figure 2a and c, respectively, represent the regions 
of the receptors with the highest binding affinity. The binding 
site is shown in the black box. The optimal binding scenarios 
could be more accurately represented using this visual charac- 
teristic. Additionally, the ChimeraX-1.8 software assisted in the 
visual analysis. Through this software, electrostatic representa- 
tions of the molecules called electrostatic surface potentials (ESP) 
were formed, with red indicating negative and blue indicating 
positive as shown in Figure 2b and 2d. 

Antibody Structure Download: Structures were collected 
via Protein Data Bank 26, an archive of 3D structure data for 
biological molecules, to complete a set of Fab fragments usable 
for analysis. By providing 3D structures for these molecules, 
they could easily be analyzed through the computational analy- 
sis tools used in the study. For the list, the fragments included 
the following: PDB ID = 1A5F, 1B4J, 1F8T, 1FL5, 1IL1, 1IQW, 
1NLB, 2HRP, 2UY1, and 4A6Y. These Fab fragments were se- 
lected based on their structures and ability to remain exclusive 
to the CD3ε and CD30 receptors. Additionally, many of the 
structures were acquired from Mus Musculus instead of Homo 
Sapiens due to their higher data availability and overall homol- 
ogy with human proteins. 

Receptor-Antibody Molecular Docking: Using computa- 
tional tools, the HDOCK 27 modeling software was used to find 
the optimal binding scenario and ligand structure. In doing so, 
the software provided the top 10 results and additional RMSD 
data. Finding receptors that bind to areas of high affinity, prefer- 
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Fig. 6. Overview of Research Methodology. This diagram illustrates the step-by-step approach used in the study, highlighting 

key steps involved in in silico bispecific antibody development. The flowchart visually represents the sequence of methods, 
including using docking and bond interaction analysis to reach an optimal Fab fragment pair. Each step is designed to optimize 
the accuracy and efficiency of data collection and analysis in research. 

 

ably in the ectodomain, resulted in selecting 10 specific receptor 
configurations determined to be “optimal” through the previ- 
ously outlined visual criteria. With this, the optimal binding and 
structural scenarios for antibodies were selected, as can be seen 

in Figures 3 and 4. Next, more specific data regarding binding 
affinity and hydrogen bond count were to be determined. 

Receptor-Antibody Molecular Docking Analysis: The 
receptor-antibody complex structures were downloaded and 
analyzed after the molecular docking simulations. The binding 
energies of the antibodies with the CD30 and CD3ε receptors 
molecules, respectively, were calculated to create a binding affin- 
ity ranking. Binding energy measures the overall strength of 
the interaction between the ligand and target molecules. Higher 
binding energy indicates a more vital, stable interaction crucial 
for therapeutic efficacy. It also implies the time that antibodies 
will bind with the receptor, increasing the probability that the 
bsAbs will interact with both types of cells. Using the HAD- 
DOCK Prodigy Web Server 28, another computational analysis 
software, the PDB files of the antibody-receptor complexes re- 
covered from the HDOCK software were inputted with minor 
adjustments to the file script. By analyzing this, a value for 
binding energy (kcal/mol) was received for each complex. This 
data was the key determinant in our conclusion regarding the 
most effective antibody for producing a bsAb. The hydrogen 
bond count between the ligand and receptors was also calculated 
using in-house Python-based software. The Python code used 
to calculate the hydrogen bond count between each receptor 
protein and antibody chains can be found on GitHub 29. Only 
the strongest bond interactions between atoms of nitrogen or 
oxygen were calculated with a maximum distance of 2.7 Å. 

Preliminary results from selection criteria: After organiz- 
ing this data, as seen below in Table 1, the criteria necessary 

for completion had been determined and analysis could finally 
begin. Due to the higher ranking of binding energy over hydro- 
gen bond count, the most optimal antibodies were determined. 
The 1IQW fragment demonstrated the highest binding affinity 
(-25.6 kcal/mol) and the highest hydrogen bond count (28) for 
the CD3ε receptor. 1A5F had the most optimal binding affinity 
(-23.0 kcal/mol), though with a low hydrogen bond count (7), 
for the CD30 receptor. Despite the low hydrogen bond count 
compared to other antibody-receptor complexes, the predeter- 
mined hierarchy of factors led to the conclusion of 1A5F being 
the most optimal for CD3ε. Thus, the combination of the 1A5F 
and 1IQW Fab fragments provided the best estimated scenario 
for binding. 

Antibody Generation: IA5F and 1IQW were combined with 
the Ig structure of PDB ID 1IGT to generate a complete antibody 
structure that may be tested for binding in vitro. As seen above  

in Figure 6, the protein sequences were edited to form two light 
chains and two heavy chains, effectively combining the Fab frag- 
ments with the antibody. Structural analysis through ChimeraX- 
1.8 additionally demonstrated that few to no hydrogen bonds 
existed within the hinge joint of the engineered antibody. Due to 
bsAb’s purpose of binding two targets simultaneously, this lack 
of hydrogen bonds in this region contributes to the high flexibil- 
ity of the molecule, increasing the probability that it would be 
viable in-vitro. This structure may be subject to additional com- 
putational and laboratory testing to identify any shortcomings 
as an effective lymphoma treatment. 

Novel Antibody Structure Prediction: To more effectively 

generate new Fab region sequences for analysis, DeepAB was 
used for predictive modeling. DeepAB is a deep-learning soft- 
ware that is considered more optimal than AlphaFold 3 for an- 
tibody generation due to it being optimized in predicting the 
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complementarity-determining regions (CDRs) and epitopes of 
antibodies 30. These regions are crucial for antigen recognition 
and are directly involved in binding, presenting it as the more 
optimal tool for this procedure. PDB files for the variable do- 
main (Fv) composed of portions from each chain, variable heavy 
(VH), and variable light (VL). The software outputted a pre- 
dicted variable region for each pair of VH and VL chains, which 
were then used along with HDOCK and HADDOCK Prodigy 
Web Server to determine the best epitopes, as seen in Table 2. 
Fv4 had the highest binding energy for CD3e (-19.6 kcal/mol) 
with 9 hydrogen bonds, and Fv1 had the highest binding energy 
for CD30 (-18.3 kcal/mol) with 8 hydrogen bonds. Analysis of 
these epitopes and variable chains shows how scientists may 
create novel Fab fragments for bsAbs, enhancing output using 
AI modeling software. 

 
4. DISCUSSION 

This study utilized computational analysis and DL to investi-  
gate their potential in developing bsAbs for lymphoma. Critical 
structural and functional parameters influencing binding speci- 
ficity and stability were compared by simulating interactions 
between receptors commonly found on lymphoma and CD8+ 
cells. Our findings align with previous research regarding CD3ε 

and CD30 as potential target  receptors  for  immunotherapies  
21. Additionally, the computational approach demonstrates the 
utility of in silico methods in accelerating antibody design and 
reducing reliance on resource-intensive laboratory research. 

Comparison with Previous Studies: Historically, bsAb de- 
velopment has been slow and resource-draining, limiting its 
availability for various diseases and cancer species. Many man- 
ufacturing techniques have been used for bsAb synthesis and 
testing, each resulting in unique structural properties. How- 
ever, many bsAb development trials have begun with typical in 
vitro pathways that primarily utilize dual-target binding assays, 
phage display, or ELISA assays to identify potential candidates 
for bsAb technology 31. Though these methods produce results, 
they are often based on a trial-and-error process, have shown 
significant bias, and do not consistently provide substantial re- 
sults 32. Pairing optimization and screening for affinity testing 
in vitro, although necessary, may not be the optimal first step, es- 
pecially when dealing with randomized sets of antibody chains. 
Many previous studies focus on proteins that have already had 
significant analyses of their properties, so a computational and 
AI based approach would be able to determine characteristics 
including binding energy, epitope location, antigen size, and ex- 
tracellular interactions that are difficult to determine otherwise. 

More recently, high throughput/single cell screening have 
been developed to more efficiently use samples to engineer bsAb 
variants. Analyses sorted various clones generated by the sys- 
tem based on specific variables, thus showing  improvement 
in bsAb design and functionality 32. Still,  the integration of 
DL has been slow when compared to other examples of anti- 
body development. Of course, there have been a small handful 
of notable applications of computational and AI in this field. 
For example, a research study utilized novel AI computational 
frameworks for selecting target receptor combinations for bis- 
pecific antibodies when focusing on research and development. 
Though this study offers significant insight into cancer treatment 
using bsAbs, this model relies heavily on data from clinically 
approved bispecific antibodies and does not consider different 
Fab regions. Additionally, without a focus on developing anti- 
body structures, it primarily aids in receptor identification  33. 

New services claim to use AI modeling to develop bispecific 
and multispecific molecules, yet their methods are not publicly 
disclosed. A clear lack of literature referencing DL software 
may be indicative of the need for a more efficient pipeline for 
discovery, which this study addresses. 

Applications and Limitations: Through this analysis, it can 
be determined that machine learning tools and computational 
studies can be used in the production of bsAbs not only for 
lymphoma but also for other cancers and diseases. bsAbs for 
lymphoma are produced in the lab at a large scale using the opti- 
mal antibody combinations. Once injected into the bloodstream, 
these structures can travel throughout the body, binding to lym- 
phoma cells and CD8+ T-cells to help accelerate the immune 
response. Although this research may permit the extension of 
computational analysis in bsAb development, it can only be a 
preliminary milestone in developing new antibodies. Clinical 
testing and laboratory analysis should be performed to validate 
antibody binding further, and it may be of interest to create a 
model that combines many of these tools used to form a devel- 
opment pipeline. 

Additionally, as this study only introduces a pathway into AI 
modeling in bsAb analysis, it comes short on important factors 
that are considered contemporary challenges in bsAb develop- 
ment. Risk factors and response prediction are still uncertain in 
treatment production and administration, and mechanisms or re- 
sistance are still present that may prevent bsAbs from achieving 
greater efficiency. Intrinsic mechanisms, including immune- 
evasive gene expression, may neutralize the efficacy of potential 
bsAb applications. As attention on DL in bsAb development 
amplifies, these risk factors, along with drug toxicity, can be 
modeled to improve in the process of drug discovery. 

Nevertheless, this technology and similar processes will be 
revolutionary in the computational field. In the context of preci- 
sion medicine, it allows for a targeted cancer approach that can 
be developed faster than traditional solutions or immunother- 
apies. By doing so, specific receptors that are characteristic of 
lymphoma subspecies may enhance longevity and mitigate the 
impact of the disease. 

 
5. CONCLUSION 

Out of the fixed antibody set, a bispecific antibody composed of 
the 1A5F and 1IQW Fab fragments would be the most effective 
in HL and ALCL treatment targeting the CD30 and CD3ε recep- 
tors. Using DL and computational software to accelerate bsAb 
development can enhance the popularity and use of these ap- 
plications, even contributing to more efficient high-throughput 
technologies and systems. The elementary methods discussed in 
this research can be effective when paired with systems used to 
reduce toxicity and, more accurately, model response prediction, 
increasing relevance in contemporary laboratories and pharma 
organizations. 
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